γ-Jet Studies

Joe Osborn
University of Michigan

Overview

- Last presentation: Feb. 14
- Showed acceptance and efficiency studies as well as some jet response studies
- Raised question of whether or not acceptance/efficiency values made sense
- Today:
 - Some photon characteristics to support acc/eff determination
 - Single photon gun + G4 response

Reminder: Photon-jet Acceptance/Efficiency

- Reminder from last time
 - Acceptance and efficiency for photon+jet is flat with ϕ and η
 - Clear p_T dependence, approaches 1 at high p_T
 - I found a small bug in the code, but the behavior is the same; just shifted down slightly
 - Some discussion with Stefan about why this is

Angular Response for γ

- η truth response is confined to $|\eta|<1$ at $p_T>25$ ish
 - This matches the efficiency towards 1 with increasing p_T
- This also reinforces discussion with Stefan that the effect is from kinematics
- i.e. as p_T increases one probes a larger x in the proton and thus is constrained kinematically to certain polar angle scatterings

sPHENIX Photon Response

sPHENIX Photon Detector Response

- Some discussion last time I presented how there have not been dedicated single photon simulation studies
- I ran single particle photon gun through the G4 sPHENIX detector
 - Single photons, flat in p_T with 0.2< p_T <40 GeV and $|\eta|$ <1.2 in full azimuth
- If there are other suggestions for observables to look at, by all means make them
 - I have the trees with truth and reco photons

Photon Energy

- Energy reco vs energy truth looks pretty standard from what we have seen so far
- Each reco photon in the event is matched with the event truth photon
- This explains this low energy junk – probably from radiation or interactions with the detector

Photon Angular Response

Random points away from y=x again likely due to random junk photons matched with the truth photon

1D p_T Histograms

- Nominal p_T response of ~0.95±0.04 achieved by ~6 GeV
- Lower p_T has noticeably worse resolution (obviously)
- Could make finer bins at low p_T if there is interest

1D Angular Histos Show Interesting Features

- ϕ response shows bimodal structure at all p_T
- Distributions are fit to a 4th order polynomial to highlight this behavior
- Perhaps these bins are smaller than inherent tower resolution?
 - According to the sPHENIX proposal the tower resolution is 0.024x0.024 in $\Delta\eta x\Delta\varphi$ so this is probably the reason for the effect seen here
- This effect is only noticable within ϕ_{truth} - ϕ_{reco} ~0.005
- All p_T bins in backups

1D Angular Histos Show Interesting Features

- η difference shows strange distribution too
- Gaussian function fit to the range that is clearly Gaussian, e.g. here the fit is between -0.01< $\Delta\eta$ <0.01 and then extended to show the deviation from Gaussian
- This could be due to mismatched photons, since the behavior goes away at higher p_T (bottom left)

Conclusions

- Photon+jet acceptance and efficiency values make sense based on kinematics
- Revisited this just to close the loop
- Ran single photon particle gun simulations through G4 sPHENIX
 - Most things look pretty reasonable. Some questions about the η residuals...
- To-Do
 - Do others have suggestions for observables I can look at for photons?
 - Anything that would be considered valuable I can take a look at I have the trees, just need some guidance

Back Ups

- 2D histogram shows the p_T dependence of the η difference
- Distributions are "fatter" with a central core at small p_T
- This behavior starts to go away at higher p_T

- 2D histogram shows bimodal behavior of φ response
 - Starts to dissipate at higher p_T, but not completely

- The following plots are response plots in energy, p_T , ϕ , and η for the single photons in different p_T bins
- They are just 1D projections of the previous 2 pages in wider p_T bins
- The fits shown are all Gaussian fits, except for the φ response plots which are shown with polynomial 4 fits
- Note that the η fits are performed over a small region and then extended to show the deviation from Gaussian at larger $\Delta \eta = \eta_{truth} \eta_{reco}$

